

How to use public API interface
in Genelec Smart IP devices

Smart IP API Documentation v1 rev 0.8.4 page 2 of 22

Smart IP API Documentation – v 1, rev 0.8.4

May 2024

Table of Contents

1 Introduction ... 4

1.1 Using Smart IP Configurator ... 4

1.2 Definitions, acronyms and abbreviations.. 4

2 Device discovery ... 5

2.1 Device MAC Address .. 5

2.2 Discovery using mDNS query ... 5

2.3 Ping ... 5

3 Unicast API control ... 6

3.1 Maximum four IP connections .. 6

3.2 Communication format .. 6

3.3 Request message ... 6

3.3.1 Header... 6

3.3.2 Body .. 7

3.4 Response message .. 7

3.4.1 Header... 7

3.4.2 Body .. 8

3.5 Supported status codes .. 8

4 Smart IP device API unicast commands .. 9

4.1 Smart IP Manager ... 9

4.2 Polling frequency .. 9

4.3 ISS power save mode ... 9

4.4 Removing PoE power at IP switch ... 9

4.5 Device wakeup .. 9

4.6 API version .. 9

4.7 /aoip ... 10

4.8 /audio... 11

4.9 /device ... 12

4.10 /events ... 15

Smart IP API Documentation v1 rev 0.8.4 page 3 of 22

4.11 /led ... 15

4.12 /network ... 16

4.13 /profile.. 18

5 Multicast API control ... 20

5.1 Multicast configuration .. 20

5.2 Multicast message format ... 20

6 Smart IP device API multicast commands ... 21

6.1 Volume level.. 21

6.2 Mute control .. 21

6.3 Profile selection ... 21

6.4 Power control .. 22

Smart IP API Documentation v1 rev 0.8.4 page 4 of 22

1 Introduction

This document describes how Genelec Smart IP devices can be controlled through the
public API contained in the Smart IP devices. The API allows many aspects of a Smart
IP device to be directly controlled by house automation systems and other control and
management systems.

The API communication mainly uses unicast communication, while certain commands
are available as multicast commands.

This API definition applies to firmware version 1.3.25 and later firmware versions.

1.1 Using Smart IP Configurator

Genelec Smart IP Configurator is a system configuration software for discovering and
setting up multi-zone installed audio systems. This software can be downloaded in the
MyGenelec area of Genelec web pages. For more information, look at
https://www.genelec.com/smart-ip-manager.

Notice! Direct API calls to devices cannot be issued at same time when Smart IP
Configurator software is in use.

1.2 Definitions, acronyms and abbreviations

These abbreviations are used in the document.

Acronym Definition

JSON JavaScript Object Notation

DNS-SD DNS Service Discovery

HTTP Hypertext Transfer Protocol

MAC address media access control address

mDNS multicast DNS

OUI Organizationally unique identifier

REST Representational state transfer

URI Uniform Resource Identifier

https://www.genelec.com/smart-ip-manager

Smart IP API Documentation v1 rev 0.8.4 page 5 of 22

2 Device discovery

2.1 Device MAC Address

Generally, manufacturer of a device can be identified by checking the first three bytes of
the MAC address. These bytes form the 24-bit OUI number that identifies the vendor,
manufacturer or organization manufacturing the device.

The OUI number AC-47-23 is registered to Genelec Oy.

2.2 Discovery using mDNS query

Devices can be discovered on the network using the mDNS protocol. This protocol
resolves the hostnames to IP addresses within small networks that do not include a local
name server.

mDNS client sends an IP protocol multicast query message that requests the hosts
having a hostname to identify themselves. These devices then send a multicast
message including their IP address and some other information.

Genelec devices automatically respond to the mDNS standard query after booting.
mDNS response can also be requested at any time by sending the mDNS standard
query ‘_smart_ip._tcp’.

Table 1. A sample of information in the mDNS standard query response.

Data Content

Service _smart_ip._tcp

Service-Instance Genelec-00-01-22

Instance-Info Host = 4430-000122.local

Address = 192.168.0.79

Port = 9000

mac = AC:47:23:00:01:22

zoneid = 49153

zonename = living room

mcastport = 49153

2.3 Ping

The Smart IP devices respond to the standard ‘ping’ message.

The device can be pinged:

ping 192.168.0.79

Smart IP API Documentation v1 rev 0.8.4 page 6 of 22

3 Unicast API control

Unicast is a method of communication where the IP network device communicates with
one other IP network device.

If the same setting is needed in several IP devices, using the unicast method, the IP
device must communicate to every single IP device one at a time. This leads into a
sequential communication scheme. However, unicast is a very robust communication
method.

3.1 Maximum four IP connections

The device has up to four simultaneous IP communication connections.

If all these IP connections are in use, additional connections cannot be established.
Therefore, it is important to close a connection that is not needed. Especially
‘keepalive’ type connection will reserve a connection until keepalive time-out is reached.

Depleting the connections can hinder communication to a device.

3.2 Communication format

The Smart IP devices use REST style communication with a reduced set of HTTP/1.1
protocol. The Smart IP API only implements the HTTP methods GET and PUT and the
URI can’t contain a query.

Communication follows the request/response paradigm.

3.3 Request message

The request message consists of a header and an optional message body.

3.3.1 Header

The header starts with the request line having the format

method /public/<version>/path HTTP/1.1\r\n

For example, we could have e.g.

GET /public/v1/device/pwr HTTP/1.1\r\n

Then the list of request header fields follows (Table 2) and finally an empty line.

The request line and other header fields must each end to <CR><LF> (carriage return
character 0x0d, line feed character 0x0a).

An empty line consists of only <CR><LF>.

The GET message usually does not need a body.

Smart IP API Documentation v1 rev 0.8.4 page 7 of 22

Table 2. Header fields of request HTTP message

Field name Field value Notes

Accept application/json

Connection keep-alive Keep connection open (default)

Connection close Close connection

Authorization Basic
YWRtaW46YWRtaW4=

Authentication credentials (default
admin:admin)

Content-Length 0 The length of the request body

Host 192.168.0.79:9000 The domain name of server

The authorization credentials are decoded with base64 (https://www.base64decode.org/
).

3.3.2 Body

The PUT message always has a header and a message body.

3.4 Response message

The response message consists of a header and an optional message body.

3.4.1 Header

The response header starts with a status line containing the status code and the reason
message, for example

HTTP/1.1 200 OK\r\n

This is followed by a list of request header fields (see Table 3) and an empty line.

The request line and other header fields must each end to <CR><LF>.

The empty line must consist of only <CR><LF>.

<CR> or carriage return character contains the value 0x0d, and the <LF> line feed
character 0x0a.

Table 3. Header fields of response HTTP message

Field name Field value Notes

Content-Type application/json

Connection keep-alive Keep connection open (default)

Connection close Close connection

Content-Length 0 The length of the response message
body.

WWW-Authenticate Basic Indicates the authentication scheme
that should be used

https://www.base64decode.org/

Smart IP API Documentation v1 rev 0.8.4 page 8 of 22

3.4.2 Body

Message body is commonly in the human readable JSON format (see http://json.org/)
consisting of attribute-value pairs and array data types.

The official MIME type of JSON is ‘application/json’.

Table 4. Supported JSON data types.

Data type Values

string A sequence of zero or more characters (ASCII). Strings are
delimited with double quotation.

number A signed decimal number (32-bit integer or float).

boolean true or false

array An ordered list of zero or more values of any type. Square bracket
notation with comma separated elements.

An example of the JSON representation:

{

 "ip": "192.168.0.79",

 "port": 9000,

 "versions": ["v1", "v2"]

}

3.5 Supported status codes

Responses from the Smart IP device contain status codes to inform the API client about
the success of the operation.

Table 5. The list of supported status codes.

Code Status Explanation

200 OK Successful operation.

400 Bad Request Invalid request, syntax error, etc

401 Unauthorized Authentication is required and has failed or has not
yet been provided.

404 Not Found The requested resource could not be found.

405 Method Not Allowed The requested method is not supported.

500 Internal Server Error Unexpected condition was encountered (out of
memory, failed operation etc).

503 Server Unavailable The server cannot handle the request.

http://json.org/

Smart IP API Documentation v1 rev 0.8.4 page 9 of 22

4 Smart IP device API unicast commands

4.1 Smart IP Manager

Notice! Do not use Smart IP API at same time with Smart IP Manager software.

The Smart IP Manager is a configuration software for efficiently setting up a system of
Smart IP devices on an IP network. However, Smart IP Manager software cannot be
used simultaneously with API commands and there is no mechanism to automatically
update the state known to multiple software simultaneously controlling certain Smart IP
device, and the communication can fall out of synchronization. Therefore, it is advisable
to use either Smart IP Manager or the API commands, but not both simultaneously.

4.2 Polling frequency

Too frequent polling of a Smart IP device can flood the IP network and overload the
device IP network interface, and these can reduce the loudspeaker responsiveness on
the IP network. It is advisable to keep the message frequency as low as possible and
avoid continuous polling.

4.3 ISS power save mode

The device can be powered down with a command. Powering down a device can save
electrical power while the IP network interface continues to run and the device is
responding to network communication. See ‘ISS Sleep’ and ‘Standby’ states for more
details.

4.4 Removing PoE power at IP switch

However, if a Smart IP device is not powered, it will not respond on the IP network.
Smart IP devices are not powered if the power supply available via the PoE from an IP
switch device connecting to the Smart IP device is removed. This is usually possible by
controlling the IP switch device. When not powered, the Smart IP devices will
require some time to boot before they start responding to API calls and pass audio. This
time depends on the specific Smart IP device, but can be up to one minute.

4.5 Device wakeup

Device will not respond to all command during ISS_SLEEP and STANDBY state. Device
can always be woken up by sending "state"="ACTIVE" with /device/pwr command.

4.6 API version

This command reports the API version in a Smart IP device.

{ip}:{port}/public/{versionstring}/

• ip: required (string), IP address (e.g. 192.168.0.79).

• port: required (string). IP port number (default 9000).

Smart IP API Documentation v1 rev 0.8.4 page 10 of 22

• versionstring: required (string), API version string e.g. v1

API version can be read by sending request

GET {ip}:{port}/device/info.

4.7 /aoip

Get identification of AoIP module.

GET /aoip/dante/identity

Media type: application/json

Properties:

• id: required(string), Identification string
• name: required(string), Name that is used as network host name
• fname: required(string), Friendly name
• mac: required(string), Ethernet MAC-address
• locked: (boolean), true - if Dante configuration is locked.

Example:

{

 "id": "001dc1fffe85ad99",

 "name": "Genelec-85ad99",

 "fname": "Genelec-85ad99",

 "mac": "00:1D:C1:85:AD:99"

}

Get network settings of AoIP module.

GET /aoip/ipv4

Media type: application/json

Properties:

• ip: required(string), IP address
• mask: required(string), Mask
• gw: required(string), Gateway

Example:

Smart IP API Documentation v1 rev 0.8.4 page 11 of 22

{

 "ip": "172.16.0.64",

 "mask": "255.255.255.0",

 "gw": "172.16.0.1"

}

4.8 /audio

These commands control the audio input used, output level and the mute of the Smart IP
device.

Get list of selected inputs

GET /audio/inputs

Select inputs.

PUT /audio/inputs

Media type: application/json

Properties:

• input: required (array of)

A: analog input connector
AoIP01: AoIP input channel 1
AoIP02: AoIP input channel 2

Example:

{

 "input": [

 "AoIP01",

 "AoIP02"

]

}

Get loudspeaker level and mute state.

GET /audio/volume

Set loudspeaker level and mute.

PUT /audio/volume

Media type: application/json

Properties:

Smart IP API Documentation v1 rev 0.8.4 page 12 of 22

• level: (number - minimum: -200 - maximum: 0), Volume level in 0.1 dB
resolution.

• mute: (boolean), Mute audio.

Example:

{

 "level": -5.2,

 "mute": false

}

4.9 /device

This command reports data on the device.

Returns device information stored in permanent OTP flash memory like serial number,
MAC address etc.

GET /device/id

Media type: application/json

Properties:

• barcode: required (string - minLength: 7 - maxLength: 20),
Bar code value. Defined during production.

• mac: required (string - maxLength: 17),
MAC address. Defined during production.

• hwId: required (string - maxLength: 32),
Hardware version number in format major.minor.rev.build. Set up during
production.

• model: required (string - maxLength: 32),
Device model name. Defined during production. This is display name that has no
functions in the device side.

• modId: required (string - maxLength: 32),
Model specific configuration. Defined during production. This parameter defines
whitch configuration set device is using.

Example:

{

 "barcode": "4430-123456",

 "mac": "AC:47:23:01:02:03",

 "hwId": "",

 "model": "4430",

 "modId": "4430-1"

}

Smart IP API Documentation v1 rev 0.8.4 page 13 of 22

Get API version string, model name and a set of version information.

GET /device/info

Media type: application/json

Properties:

• fwId: (string)
Firmware identification number in format model_base-major.minor.rev-
build_date_and_time.

• build: (string)
Committed GIT revision number. -modif means that uncommitted source code is
used when creating firmware.

• baseId: (string)
Platform software version number in format major.minor.rev. This represents the
common source code in folder name srcc.

• hwId: (string)
Hardware version string. Set up during production.

• model: (string)
Device model name. Set up during production.

• category: (string)
SAM_1W, SAM_2W, SAM_3W, MICR.

• technology: (string)
SAM_IP

• upgradeId: (integer)
Compability information for upgrading firmware

• apiVer: (string)
API version

• confirmFwUpdate: (boolean)
New firmware is running and waiting for confirmation from user. Bootloader
reverts backup firmware during next reboot if confirmation is not done.

Example:

{

 "fwId": "44x0-1-0-5-201903121011",

 "build": "6ef154-modif",

 "baseId": "1.0.0",

 "hwId": "304-4430 revA",

 "upgradeId": 10,

 "model": "4430",

 "category": "SAM_2W",

 "technology": "SAM_IP",

 "apiVer": "v1"

}

Smart IP API Documentation v1 rev 0.8.4 page 14 of 22

Switch between sleep and active state. Device can be booted also.

PUT /device/pwr

Media type: application/json

Properties:

• state: (one of STANDBY, ACTIVE, BOOT, AOIPBOOT)

Example:

{

 "state": "STANDBY"

}

Get power state.

GET /device/pwr

Media type: application/json

Properties:

• state: (one of STANDBY, ACTIVE, ISS_SLEEP, PWR_FAIL)

• poeAllocatedPwr: (number)

• Power allocated by PoE PSE (switch) [0.1W].

• poePd15W: (boolean)

• true - if PoE PD (loudspeaker) limits current consumption to 15W, false - if full
power is needed (30W).

Example:

{

 "state": "ACTIVE",

 "poeAllocatedPwr": 25.5,

 "poePd15W": false

}

Smart IP API Documentation v1 rev 0.8.4 page 15 of 22

4.10 /events

Read measurement data.

GET /events

Media type: application/json

Properties:

• bsLevel: (number), Bass output level.

• twLevel: (number), Tweeter output level.

• inLevel: (number), input level.

• cpuT: (number), CPU temperature.

• nwInKbps: (number), Network traffic to host CPU [kbps].

• cpuLoad: (integer), CPU load.

• uptime: (string), Time from startup.

Example:

{

 "bsLevel": -125.9,

 "twLevel": -110.6,

 "inLevel": -116.1,

 "cpuT": 51,

 "nwInKbps": 0,

 "cpuLoad": 73,

 "uptime": "3d 10h 36m 12s"

}

4.11 /led

This command controls the front panel LED lights and how it is used.

Control led visibility

PUT /device/led

Get led settings

GET /device/led

Media type: application/json

Smart IP API Documentation v1 rev 0.8.4 page 16 of 22

Properties:

• ledIntensity: (number), Led brightness [0, 100]%.

• rj45Leds: (Boolean),
true – RJ45 ethernet connector leds are enabled
false - RJ45 ethernet connector leds are disabled

• hideClip: (Boolean)
true – clip led is disabled
false – clip led is enabled

Hide clip property is applicable to subwoofer only.

Example:

{

 "ledIntensity": 70,

 "rj45Leds": true,

 "hideClip": false

}

4.12 /network

Network related endpoints.

Read network configuration.

GET /network/ipv4

Write network configuration.

PUT /network/ipv4

Media type: application/json

Properties:

• hostname: (string - minLength: 1 - maxLength: 63)
Valid characters [A-Z], [a-z], [0-9], -

• mode: (one of auto, static)
auto - DHCP or autoip active, static - static ip set by user

• ip: (string)
IP address. Not needed if mode is auto.

• mask: (string)
IP address mask. Not needed if mode is auto.

• gw: (string)
Gateway. Not needed if mode is auto.

Smart IP API Documentation v1 rev 0.8.4 page 17 of 22

• volIp: (string)
Group address for multicast control. Set address 0.0.0.0 to prevent device joining
to multicast group.

• volPort: (integer - minimum: 1024 - maximum: 65535)
Port number for multicast control.

• auth: (string - maxLength: 64)
Credentials in format user:passwd.

Example:

{

 "hostname": "4430-000102",

 "mode": "static",

 "ip": "192.168.0.1",

 "mask": "255.255.255.0",

 "gw": "192.168.0.100",

 "volIp": "239.0.0.2",

 "volPort": 49152,

 "auth": "admin:admin"

}

Get zone info.

GET /network/zone

Media type: application/json

Properties:

• zone: required (integer - minimum: 0)
Zone identification. Device can be removed from zone by sending zone id = 0 or
by sending zone id with empty name.

• name: required (string - maxLength: 50)
Name of the zone.

Example:

{

 "zone": 2,

 "name": "Listening room"

}

Smart IP API Documentation v1 rev 0.8.4 page 18 of 22

4.13 /profile

Endpoints for controlling profiles.

Get list of profiles stored in device.

GET /profile/list

Media type: application/json

Properties:

• selected: required (integer - minimum: 0 - maximum: 5)
Current profile ID selected by user. Notice! The device will use default settings
(profile ID = 0) in case of selected profile ID is not stored to device.

• startup: required (integer - minimum: 0 - maximum: 5)
Startup defines profile ID which will be selected after reboot. Notice! The device
will use default settings (profile ID = 0) in case of selected profile ID is not stored
to device.

• list: required (array of profileitem)
List of stored profiles.

o id: required (integer - minimum: 0 - maximum: 5)
Profile ID. Number of profiles in each zone and device is limited to 5.
Profile id 0 stands for default settings.

o name: required (string - maxLength: 50)
Name of the profile.

Example:

{

 "selected": 0,

 "startup": 0,

 "list": [

 {

 "id": 5,

 "name": "Profile 5"

 }

]

}

Restore profile from flash and set it as an active profile.

PUT /profile/restore

Media type: application/json

Smart IP API Documentation v1 rev 0.8.4 page 19 of 22

Properties:

• id: required (integer - minimum: 0 - maximum: 5)
Profile ID to be restored. Notice! The device will use default settings (profile ID =
0) in case of selected profile ID is not stored to device.

• startup: (boolean)
If true; profile ID =is selected as an active profile after power reset. Notice! The
device will use default settings (profile ID = 0) in case of selected profile ID is not
stored to device.

Example:

{

 "id": 1,

 "startup": false

}

Smart IP API Documentation v1 rev 0.8.4 page 20 of 22

5 Multicast API control

Multicast is a group communication method where one message is addressed to a group
of devices simultaneously. This makes communication faster, improves synchronization
of command actions, and reduces traffic on the IP network.

Multicast messages spread across the IP network, and this can lead to load on the
network. To reduce multicast messages in the network, it is recommended to enable
IGMP snooping on routers.

Multicast communication is less secure to unicast communication as the multicast
recipients do not interact with the IP message sender to ensure that message is
correctly received or received at all, and the sender of multicast message may remain
ignorant of the success of the message.

5.1 Multicast configuration

To use multicast, a device must join a multicast group.

The device will join a multicast group automatically if the group IP address (224.0.0.0 –
239.255.255.255) and port number (49152 – 65535) is set in the device. Setting can be
done with Smart IP Manager.

Multicast control can be disabled by setting multicast address to 0.0.0.0.

5.2 Multicast message format

Every multicast message starts with JSON name “mcast” which has message object.
Message object contains version info and message name/value pair.

Empty message looks like this:

{

 "mcast": {

 "ver": 1

 }

}

Smart IP API Documentation v1 rev 0.8.4 page 21 of 22

6 Smart IP device API multicast commands

6.1 Volume level

Properties:

• level: required (float), Volume level range is [-130.0, 0.0]

Example:

{

 "mcast": {

 "ver": 1,

 "level": -30

 }

}

6.2 Mute control

Properties:

• mute: required (boolean),
Muted device is indicated with orange front led and unmuted with green front led.

Example:

{

 "mcast": {

 "ver": 1,

 "mute": true

 }

}

6.3 Profile selection

Smart IP devices can keep five complete configurations in memory. These
configurations are called profiles. The profile selection enables the profiles to be recalled
for use.

Properties:

• profile: required (integer)
The profile can be changed by sending the profile number. Number 0 is the
default profile with flat response. Profiles 1-5 can be setup with Smart IP
Manager.

Smart IP API Documentation v1 rev 0.8.4 page 22 of 22

Example:

{

 "mcast": {

 "ver": 1,

 "profile": 0

 }

}

6.4 Power control

This command can efficiently turn on and off, as well as boot the complete multicast set
of Smart IP devices.

Properties:

• state: required (text)
The device can be put to standby mode by using value “STANDBY” and wake up
by booting device with value “BOOT”.

Examples:

{

 "mcast": {

 "ver": 1,

 "state": "STANDBY"

 }

}

{

 "mcast": {

 "ver": 1,

 "state": "BOOT"

 }

}

(end of document)

	1 Introduction
	1.1 Using Smart IP Configurator
	1.2 Definitions, acronyms and abbreviations

	2 Device discovery
	2.1 Device MAC Address
	2.2 Discovery using mDNS query
	2.3 Ping

	3 Unicast API control
	3.1 Maximum four IP connections
	3.2 Communication format
	3.3 Request message
	3.3.1 Header
	3.3.2 Body

	3.4 Response message
	3.4.1 Header
	3.4.2 Body

	3.5 Supported status codes

	4 Smart IP device API unicast commands
	4.1 Smart IP Manager
	4.2 Polling frequency
	4.3 ISS power save mode
	4.4 Removing PoE power at IP switch
	4.5 Device wakeup
	4.6 API version
	4.7 /aoip
	4.8 /audio
	4.9 /device
	4.10 /events
	4.11 /led
	4.12 /network
	4.13 /profile

	5 Multicast API control
	5.1 Multicast configuration
	5.2 Multicast message format

	6 Smart IP device API multicast commands
	6.1 Volume level
	6.2 Mute control
	6.3 Profile selection
	6.4 Power control

